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Abstract

The transient response of a piezoelectric strip with an eccentric crack normal to the strip boundaries under applied

electromechanical impacts is considered. By using the Laplace transform, the mixed initial-boundary-value problem is

reduced to triple series equations, then to a singular integral equation of the first kind by introducing an auxiliary

function. The Lobatto–Chebyshev collocation technique is adopted to solve numerically the resulting singular integral

equation. Dynamic field intensity factors and energy release rate are obtained for both a permeable crack and an

impermeable crack. The effects of the crack position and the material properties on the dynamic stress intensity factor

are examined and numerical results are presented graphically.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The dynamic response problem of mechanical and electrical behaviors in a piezoelectric material under

various time-dependent loadings is of great significance in some practical applications such as in the de-

tection of ultrasonic waves and has recently received much attention. In particular, many efforts in this field

have been made to analyze the response features of the electric and elastic fields disturbed by cracks in a

piezoelectric material subjected to dynamic electromechanical loadings. The fundamental solutions and

general solutions for dynamic piezoelectricity equations for piezoelectric materials have been derived by

Khutoryansky and Sosa (1995), Sosa and Khutoryansky (2001) and Ding et al. (1996), respectively. The
dynamic problem of crack propagation in a piezoelectric material has been investigated in the quasi-

electrostatic approximation method by Dascalu and Maugin (1995). The dynamic electroelastic behavior

of a piezoelectric material has been analyzed for a semi-infinite moving crack subjected to impact loads
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by Li and Mataga (1996a,b) with the electrode boundary condition and the vacuum boundary condition at

the crack surfaces, respectively. For a stationary crack of finite length in a piezoelectric material, electro-

elastic field under electromechanical impacts acting on the crack surfaces has been analyzed by researchers

such as Chen and Yu (1997) and Chen and Karihaloo (1999). The results are further extended to two
coplanar mode-III cracks in a piezoelectric material (Chen and Worswich, 2000) and in a piezoelectric strip

(Meguid and Chen, 2001). The dynamic problem of multiple mode-III cracks in a non-homogeneous

material has been studied by Wang et al. (1998). The impact response problem of a mode-I crack in a

piezoelectric ceramic has been considered by Shindo et al. (1999), who determined numerically the dynamic

stress intensity factor and the dynamic energy release rate under the electrically permeable assumption, and

by Wang and Noda (2001), who dealt with the dynamic problem of a crack in a smart laminate with two

piezoelectric layers bonded to an elastic layer. For a semi-infinite crack in a piezoelectric material subjected

to a concentrated electromechanical impact at the crack surfaces, a closed-form solution has been derived
by Li (2001). For piezoelectric solids of finite dimension, a piezoelectric strip containing an antiplane shear

crack or a mode-III crack parallel to the strip boundaries subjected to a sudden electromechanical impact

has been treated by Shin et al. (2001) and Li and Fan (2002). For an antiplane shear crack normal to the

strip boundaries and lying at the center of the strip, the dynamic problem has also been tackled by Chen

and Meguid (2000) and Wang and Yu (2000), respectively.

This paper is concerned with the dynamic problem of a piezoelectric strip with a crack perpendicular to

the strip boundaries. It is organized as follows. Section 2 gives a statement of the problem, in which the

associated electric and elastic boundary conditions under the impermeable and permeable cases are given.
Using the Laplace transform and the technique of variable separation, triple series equations and further a

singular integral equation of the first kind are derived for both cases considered in Section 3. In Section 4,

based on the Lobatto–Chebyshev collocation technique, the resulting singular integral equation is solved

numerically. The dynamic stress intensity factor and the dynamic energy release rate in the physical space

are obtained by a numerical inversion of the Laplace transform in Section 5. The effects of the crack position

and the material properties on the normalized stress intensity factor are examined and numerical results are

presented in Section 6. Finally, the conclusions are summarized.

2. Statement of the problem

Consider an infinitely long transversely isotropic piezoelectric strip of finite width h occupying the region
06 x6 h, �1 < y < 1 with a through Griffith crack lying at a6 x6 b, y ¼ 0 ð06 a < b6 hÞ, as shown in
Fig. 1. Here Cartesian coordinates x, y, z are the principal axes of the material symmetry while the z-axis,
which is not depicted, is oriented in the poling direction of the piezoelectric strip. The crack fronts are

assumed to be parallel to the z-axis and the crack surfaces are perpendicular to the strip surfaces or
boundaries. When subjected to sudden applied antiplane mechanical and inplane electric impacts, the

piezoelectric strip is in a state of antiplane deformation, or longitudinal shear deformation. In this case,

there are only nonvanishing the out-of-plane displacement wðx; y; tÞ and the inplane electric potential
/ðx; y; tÞ, which are independent of z, i.e.

uðx; y; tÞ ¼ 0; vðx; y; tÞ ¼ 0; w ¼ wðx; y; tÞ; ð1Þ

Ezðx; y; tÞ ¼ 0; Ex ¼ Exðx; y; tÞ; Ey ¼ Eyðx; y; tÞ; ð2Þ

where the out-of-plane displacement gives the strain components

czx ¼ w;x; czy ¼ w;y ð3Þ

3572 X.-F. Li, G.J. Tang / International Journal of Solids and Structures 40 (2003) 3571–3588



and the electric-field components are determined by

Ex ¼ �/;x; Ey ¼ �/;y ; ð4Þ
the comma denoting partial differentiation with respect to the suffix space variable. Based on the consti-

tutive equations of linear piezoelectricity theory, for the present analysis stress and electric displacement are

related to strain and electric field by the following equations

szx ¼ c44czx � e15Ex; szy ¼ c44czy � e15Ey ; ð5Þ

Dx ¼ e15czx þ e11Ex; Dy ¼ e15czy þ e11Ey ; ð6Þ
where c44, e11, and e15 are the elastic stiffness measured in a constant electric field, the dielectric permittivity
measured at a uniform strain, the piezoelectric constant, respectively.

Further, it follows from the equation of motion and the equilibrium equation of charges that wðx; y; tÞ
and /ðx; y; tÞ satisfy the basic governing differential equations for antiplane piezoelectricity dynamics, in the
absence of body forces and free charges,

c44r2wþ e15r2/ ¼ q
o2w
ot2

; e15r2w� e11r2/ ¼ 0; ð7Þ

where q is the mass density of the piezoelectric ceramic strip, and r2 represents the two-dimensional
Laplacian operator.

The relevant mechanical and electric boundary conditions are given as follows. The strip surfaces are

clearly free of stress and of electric displacement, which can be stated as

szxð0; y; tÞ ¼ 0; szxðh; y; tÞ ¼ 0; �1 < y < 1; t > 0; ð8Þ

Dxð0; y; tÞ ¼ 0; Dxðh; y; tÞ ¼ 0; �1 < y < 1; t > 0: ð9Þ
To obtain a solution of the problem, apart from boundary conditions at the strip surfaces, appropriate

boundary conditions at the crack surfaces must be furnished. Of much interest from the viewpoint of

fracture mechanics is the singular electroelastic field disturbed by a crack subjected to applied impact

loadings. Owing to symmetry of the problem it is sufficient to consider the problem in the upper half-strip

y P 0, so in the following we confine our attention to this region. Consequently, by superposition the

problem in this region is solved under the following boundary conditions at y ¼ 0,
szyðx; 0; tÞ ¼ �s0fmðtÞ; a < x < b; t > 0; ð10Þ

a

h

x

y

b

Fig. 1. A piezoelectric strip with an eccentric crack normal to the strip boundaries.
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wðx; 0; tÞ ¼ 0; 06 x6 a; b6 x6 h; t > 0; ð11Þ

/ðx; 0; tÞ ¼ 0; 06 x6 h; t > 0; ð12Þ
for the permeable crack assumption, and

szyðx; 0; tÞ ¼ �s0fmðtÞ; a < x < b; t > 0; ð13Þ

Dyðx; 0; tÞ ¼ �D0feðtÞ; a < x < b; t > 0; ð14Þ

wðx; 0; tÞ ¼ 0; 06 x6 a; b6 x6 h; t > 0; ð15Þ

/ðx; 0; tÞ ¼ 0; 06 x6 a; b6 x6 h; t > 0; ð16Þ
for the impermeable crack assumption, where fmðtÞ and feðtÞ are prescribed functions in time t, fmðtÞ ¼ 0
and feðtÞ ¼ 0 as t6 0, and s0 and D0 are prescribed constants.
Here, it is pointed out that the solution to the above problem is applicable to the case where two co-

planar cracks (a < jxj < b) of equal length lying symmetrically in a piezoelectric strip (jxj6 h). For the
latter, if electromechanical loading is symmetrically applied with respect to x, we find that wðx; yÞ and
/ðx; yÞ are symmetrical or even with respect to x, from which w;xðx; yÞ and /;xðx; yÞ are odd, and so
w;xð0; yÞ ¼ /;xð0; yÞ ¼ 0. Furthermore, in view of the constitutive equations szxð0; yÞ ¼ Dxð0; yÞ ¼ 0, which
are equivalent to the free boundary conditions at the strip surface x ¼ 0. As a result, the solution to the
problem stated above is also applicable to that a piezoelectric plane with a periodic array of two coplanar

cracks of equal length (a < jx� 2mhj < b; m ¼ 0;	1; . . . ; ða < b < hÞ). Because of the same reason, we can
conclude that szxð0; yÞ ¼ Dxð0; yÞ ¼ 0 and szxðh; yÞ ¼ Dxðh; yÞ ¼ 0.

3. Derivation of the singular integral equation

A simple approach for simplifying Eq. (7) is to introduce a new function

u ¼ / � e15
e11

w ð17Þ

and Eq. (7) then becomes

r2w ¼ 1

c2s

o2w
ot2

; r2u ¼ 0; ð18Þ

where cs ¼
ffiffiffiffiffiffiffiffiffi
ce=q

p
denotes the shear wave velocity of a piezoelectric material, ce ¼ ðc44e11 þ e215Þ=e11 being

the elastic stiffened constant identical to the one cD44 measured under a constant electric displacement
condition (Dieulesaint and Royer, 1980).

In order to obtain the desired electroelastic field, for convenience it is necessary to impose that the

piezoelectric strip is initially at rest. Namely, the piezoelectric material is subjected to the vanishing initial

conditions

wðx; y; 0Þ ¼ 0; ow
ot

����
ðx;y;0Þ

¼ 0; 06 x6 h; �1 < y < 1; ð19Þ

/ðx; y; 0Þ ¼ 0; o/
ot

����
ðx;y;0Þ

¼ 0; 06 x6 h; �1 < y < 1: ð20Þ

Additionally, the solution should be sought under the regularity conditions. In other words, all the

electric and elastic quantities will vanish as y ! 1. Under such circumstances, using the method of variable
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separation (Courant and Hilbert, 1962) it is easy to verify that an appropriate solution to Eq. (18) in the

Laplace transform domain may be written in a Fourier series of the form:

w�ðx; y; pÞ ¼
X1
n¼0

Anðn; pÞ expð�ayÞ cosðnbxÞ; 06 x6 h; y P 0; ð21Þ

u�ðx; y; pÞ ¼
X1
n¼0

Bnðn; pÞ expð�nbyÞ cosðnbxÞ; 06 x6 h; y P 0; ð22Þ

where

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np
h

� �2
þ p

cs

� �2s
; b ¼ p

h
; ð23Þ

Anðn; pÞ and Bnðn; pÞ (n ¼ 0; 1; 2; . . .) are unknown functions to be determined from given boundary con-

ditions. Here the star denotes the Laplace transform of a function with respect to t, defined by

f �ðpÞ ¼
Z 1

0

f ðtÞe�pt dt; ð24Þ

where p is the Laplace transform parameter.
Furthermore, it follows from (17) that electric potential /ðx; y; tÞ in the Laplace transform domain is

given by

/�ðx; y; pÞ ¼
X1
n¼0

e15
e11

Anðn; pÞ expð�ayÞ
�

þ Bnðn; pÞ expð�nbyÞ
�
cosðnbxÞ: ð25Þ

With the aid of constitutive equations, from (21) and (25) it is not difficult to obtain the expressions for

the components of the stress, electric displacement and electric field in the Laplace transform domain in

terms of Anðn; pÞ and Bnðn; pÞ, i.e.

s�zx ¼ �b
X1
n¼1

n½ceAn expð�ayÞ þ e15Bn expð�nbyÞ
 sinðnbxÞ; ð26Þ

s�zy ¼ �b
X1
n¼0

ace
b

An expð�ayÞ
�

þ ne15Bn expð�nbyÞ
�
cosðnbxÞ; ð27Þ

D�
x ¼ be11

X1
n¼1

nBn expð�nbyÞ sinðnbxÞ; ð28Þ

D�
y ¼ be11

X1
n¼0

nBn expð�nbyÞ cosðnbxÞ; ð29Þ

E�
x ¼ b

X1
n¼1

n
e15
e11

An expð�ayÞ
�

þ Bn expð�nbyÞ
�
sinðnbxÞ; ð30Þ

E�
y ¼ b

X1
n¼0

ae15
be11

An expð�ayÞ
�

þ nBn expð�nbyÞ
�
cosðnbxÞ; ð31Þ

for 06 x6 h, y P 0.
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Here, based on the method of variable separation, a novel series expansion method is presented to solve

the problem associated a piezoelectric strip with a crack. Owing to a suitable selection of the form of a

solution, from expressions (26) and (28) it is readily found that boundary conditions (8) and (9) are

identically fulfilled. Obviously, this method can be extended to coplanar multicracks in a strip. In what
follows a crack subjected to electromechanical impacts is analyzed under the permeable and the imper-

meable assumptions, respectively. It is noted that for the problems involving a central crack or two co-

planar cracks of equal length normal to the strip surfaces, a usual approach is to employ the Fourier

transform technique to solve it (Chen and Meguid, 2000; Meguid and Chen, 2001; Wang and Yu, 2000).

3.1. The permeable case

With the help of the vanishing initial conditions (19) and (20), application of the Laplace transform to
boundary conditions (10)–(12), together with the above corresponding expressions for y ¼ 0, yieldsX1

n¼0
½aceAn þ nbe15Bn
 cosðnbxÞ ¼ s0f �

mðpÞ; a < x < b; ð32Þ

X1
n¼0

An cosðnbxÞ ¼ 0; 06 x6 a; b6 x6 h; ð33Þ

X1
n¼0

e15
e11

An

�
þ Bn

�
cosðnbxÞ ¼ 0; 06 x6 h: ð34Þ

From (34), it is easily shown that

Bn ¼ � e15
e11

An; n ¼ 0; 1; 2; . . . ð35Þ

Eliminating Bn in (32) givesX1
n¼0

ace

�
� nb

e215
e11

�
An cosðnbxÞ ¼ s0f �

mðpÞ; a < x < b: ð36Þ

Then Eqs. (33) and (36) form triple series equations for An.

The resulting triple series equations can be further reduced to a singular integral equation by introducing

a new unknown function. To achieve this, we choose An given by

A0 ¼ � 1
h

Z b

a
sgðs; pÞds; ð37Þ

An ¼ � 2

nhb

Z b

a
gðs; pÞ sinðnbsÞds; n ¼ 1; 2; . . . ; ð38Þ

where gðs; pÞ is an auxiliary function, whose inversion of the Laplace transform denotes the derivative of

the crack displacement shape or the screw dislocation density across the crack, owðx; 0; tÞ=ox. In effect, the
above may be derived by making use of the finite Fourier transform (Sneddon, 1972). Substituting (37) and

(38) into (33), and recalling the known result (Gradshteyn and Ryzhik, 1980)

x
2
þ
X1
n¼1

1

n
sinðnxÞ cosðnyÞ ¼

p
2
; 0 < y < x;

p
4
; y ¼ x;

0; x < y < p;

8>><
>>: ð39Þ
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we find that Eq. (33) is automatically satisfied provided that gðx; pÞ is subjected to the constraintZ b

a
gðx; pÞdx ¼ 0; ð40Þ

which is apparent due to the fact that gðx; pÞ is the Laplace transform of owðx; 0; tÞ=ox. Furthermore, by
substituting (37) and (38) into (36), and employing the identity (Gradshteyn and Ryzhik, 1980)

X1
n¼1

sinðnxÞ cosðnyÞ ¼ 1
2

sinðxÞ
cosðyÞ � cosðxÞ ; 0 < x; y < p; ð41Þ

Eq. (36) then becomes a singular integral equation of the form:

1

h

Z b

a

gðs; pÞ sinðbsÞ
cosðbsÞ � cosðbxÞ dsþ

1

h

Z b

a
gðs; pÞTperðs; x; pÞds ¼

s0
c44

f �
mðpÞ; a < x < b; ð42Þ

with

Tperðs; x; pÞ ¼ � 1

1� k2e

ps
cs

8<
: þ 2

X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

bncs

� �2s2
4 � 1

3
5 sinðnbsÞ cosðnbxÞ

9=
;; ð43Þ

where ke ¼ e15=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c44e11 þ e215

p
denotes the electromechanical coupling coefficient.

3.2. The impermeable case

For this case, in a similar manner, by making use of the impermeable crack assumption one can derive

the following equations

X1
n¼0

½aceAn þ nbe15Bn
 cosðnbxÞ ¼ s0f �
mðpÞ; a < x < b; ð44Þ

be11
X1
n¼0

nBn cosðnbxÞ ¼ �D0f �
e ðpÞ; a < x < b; ð45Þ

X1
n¼0

An cosðnbxÞ ¼ 0; 06 x6 a; b6 x6 h; ð46Þ

X1
n¼0

e15
e11

An

�
þ Bn

�
cosðnbxÞ ¼ 0; 06 x6 a; b6 x6 h; ð47Þ

which are further rewritten as two decoupled systems of triple series equations for An and Bn,

X1
n¼0

An cosðnbxÞ ¼ 0; 06 x6 a; b6 x6 h; ð48Þ

X1
n¼0

aAn cosðnbxÞ ¼
e11s0f �

mðpÞ þ e15D0f �
e ðpÞ

c44e11 þ e215
; a < x < b; ð49Þ
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and X1
n¼0

Bn cosðnbxÞ ¼ 0; 06 x6 a; b6 x6 h; ð50Þ

X1
n¼0

nBn cosðnbxÞ ¼ � D0
be11

f �
e ðpÞ; a < x < b: ð51Þ

For the first system for An, still denoting An as (37) and (38), an analogous procedure to the above for a

permeable crack results in a governing singular integral equation for gðs; pÞ as follows:

1

h

Z b

a

gðs; pÞ sinðbsÞ
cosðbsÞ � cosðbxÞ dsþ

1

h

Z b

a
gðs; pÞTimpðs; x; pÞds ¼

e11s0f �
mðpÞ þ e15D0f �

e ðpÞ
c44e11 þ e215

; ð52Þ

for a < x < b, with

Timpðs; x; pÞ ¼ � ps
cs

8<
: þ 2

X1
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

bncs

� �2s2
4 � 1

3
5 sinðnbsÞ cosðnbxÞ

9=
;; ð53Þ

where gðs; pÞ is subjected to the constraint (40).
Now, we in turn consider the second system for Bn. By representing Bn as the following integrals

B0 ¼ � 1
h

Z b

a
sqðs; pÞds; ð54Þ

Bn ¼ � 2

nhb

Z b

a
qðs; pÞ sinðnbsÞds; n ¼ 1; 2; . . . ; ð55Þ

and in a similar manner, one can obtain that qðs; pÞ satisfies
1

h

Z b

a

qðs; pÞ sinðbsÞ
cosðbsÞ � cosðbxÞ ds ¼ �D0

e11
f �
e ðpÞ; a < x < b; ð56Þ

subjected to the constraintZ b

a
qðs; pÞds ¼ 0: ð57Þ

4. Solution of the equation

It is readily seen that the singular equations derived above are similar. Due to the complicated form of

the Fredholm kernels, it seems unlikely that a closed-form solution can be determined for gðx; pÞ unless the
Fredholm kernels vanish which occurs when p ! 0. The latter corresponds to the situation when t ! 1, or
the corresponding static case, which is the same in form as Eq. (56). By solving them analytically, an
analytical solution in a closed form has been obtained (Li, submitted for publication). In the following, we

first consider a singular integral equation of the form

1

h

Z b

a

gðs; pÞ sinðbsÞ
cosðbsÞ � cosðbxÞ dsþ

1

h

Z b

a
gðs; pÞT ðs; x; pÞds ¼ Pmf �

mðpÞ þ Pef �
e ðpÞ; a < x < b; ð58Þ

where T ðs; x; pÞ is Tperðs; x; pÞ for the permeable case or Timpðs; x; pÞ for the impermeable case, and Pm and Pe
are two relevant constants.
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For the purpose of numerical computation, we introduce the following variables

x1 ¼ cosðbxÞ; s1 ¼ cosðbsÞ; a1 ¼ cosðbaÞ; b1 ¼ cosðbbÞ; ð59Þ

and Eq. (58) is then rewritten as a standard singular integral equation with Cauchy kernel of the first kind

1

p

Z a1

b1

g1ðs1; pÞ
s1 � x1

ds1 þ
1

p

Z a1

b1

g1ðs1; pÞT1ðs1; x1; pÞds1 ¼ Pmf �
mðpÞ þ Pef �

e ðpÞ; b1 < x1 < a1; ð60Þ

where

g1ðs1; pÞ ¼ gðs; pÞ; ð61Þ

T1ðs1; x1; pÞ ¼
T ðs; x; pÞ
sinðbsÞ : ð62Þ

Next, defining further the normalized variables �ss and �xx such that

s1 ¼
a1 � b1
2

�ssþ a1 þ b1
2

; x1 ¼
a1 � b1
2

�xxþ a1 þ b1
2

; ð63Þ

Eq. (60), in conjunction with the constraint (40), then becomes

1

p

Z 1

�1

�ggð�ss; pÞ
�ss� �xx

d�ssþ 1
p

Z 1

�1
�ggð�ss; pÞT ð�ss;�xx; pÞd�ss ¼ Pmf �

mðpÞ þ Pef �
e ðpÞ; �1 < �xx < 1; ð64Þ

with the constraintZ 1

�1

�ggð�ss; pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a1�b1

2
�ssþ a1þb1

2

� �2r d�ss ¼ 0; ð65Þ

where

�ggð�ss; pÞ ¼ g1ðs1; pÞ ¼ gðs; pÞ; ð66Þ

T ð�ss;�xx; pÞ ¼ a1 � b1
2

T1ðs1; x1; pÞ ¼
cosðbaÞ � cosðbbÞ

2 sinðbsÞ T ðs; x; pÞ: ð67Þ

Eq. (64) with the constraint (65) can be attacked by means of existing numerical schemes. In what
follows the Lobatto–Chebyshev collocation method (Theocaris and Ioakimids, 1977; Erdogan, 1981), is

utilized to determinate the numerical solution of the above equation. It is pointed out that this method has

a remarkable advantage as compared to the Gauss–Chebyshev collocation method (Erdogan, 1978), since

the field intensity factors at the crack tips of concern to us are obtained directly for the former, and

evaluated with a complementary procedure such as extrapolation based on the determined internal values

for the latter.

From the physical considerations, the function gðx; pÞ denoting owðx; 0; pÞ=ox in a < x < b must have
singularity at the crack tips, and must be integrable in a < x < b. Hence, �ggð�xx; pÞ is assumed to take the form

�ggð�xx; pÞ ¼ Pmf �
mðpÞ

�
þ Pef �

e ðpÞ
� Xð�xx; pÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �xx2

p ; ð68Þ

where Xð�xx; pÞ is a bounded continuous function in the interval j�xxj6 1, which is obtainable by using a
collocation quadrature technique. Accordingly, by employing the numerical integration formula of the

closed-form (Theocaris and Ioakimids, 1977; Erdogan, 1981)
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1

p

Z 1

�1

1

�ss� �xxj

Xð�ss; pÞffiffiffiffiffiffiffiffiffiffiffiffi
1� �ss2

p d�ss ’ 1
n

Xn

i¼0
ki

Xð�ssi; pÞ
�ssi � �xxj

; ð69Þ

where

�xxj ¼ cos
ð2j� 1Þp
2n

� �
; j ¼ 1; 2; . . . ; n; ð70Þ

�ssi ¼ cos
ip
n

� �
; i ¼ 0; 1; . . . ; n; ð71Þ

are the zeros of Chebyshev polynomials TnðxÞ of the first kind of degree n and Un�1ðsÞ of the second kind of
degree n� 1, respectively, and

k0 ¼ kn ¼ 1
2
; k1 ¼ � � � ¼ kn�1 ¼ 1: ð72Þ

Eq. (64) subjected to the constraint (65) is approximated by the following system of nþ 1 linear algebraic
equations in nþ 1 unknown Xð�ssi; pÞ ði ¼ 0; 1; . . . ; nÞ:

1

n

Xn

i¼0
ki

Xð�ssi; pÞ
�ssi � �xxj

þ 1
n

Xn

i¼0
kiT ð�ssi;�xxj; pÞXð�ssi; pÞ ¼ 1; j ¼ 1; 2; . . . ; n; ð73Þ

Xn

i¼0

kiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a1�b1

2
�ssi þ a1þb1

2

� �2r Xð�ssi; pÞ ¼ 0; ð74Þ

the solution of which is then straightforward.

Therefore, the values of Xð�ss; pÞ at the collocation points �ssi, Xð�ssi; pÞ, can be determined by solving the
above resulting algebraic system. Especially, Xð�ss0; pÞ and Xð�ssn; pÞ are of particular importance, since they
are exactly proportional to or related directly to the field intensity factors near the crack tips, x ¼ a; b, in the
Laplace transform domain. In effect, after some algebra, we find

1

h

Z b

a

gðs; pÞ sinðbsÞ
cosðbsÞ � cosðbxÞ dsþ

1

h

Z b

a
gðs; pÞT ðs; x; pÞds ¼ �½Pmf �

mðpÞ þ Pef �
e ðpÞ


Xð	1; pÞ�xxffiffiffiffiffiffiffiffiffiffiffiffiffi
�xx2 � 1

p þOð1Þ; ð75Þ

for x ’ a� 0 or bþ 0.
Secondly, to obtain the desired crack-tip field for an impermeable crack, in addition to the solution

gðs; pÞ to Eq. (52) one must determine the solution qðs; pÞ to Eq. (56). Owing to the particular form of Eq.
(56), an analytical solution to Eq. (56) is obtainable by a similar manner to that in Li (submitted for

publication), which can be expressed in the present study as

qðx; pÞ ¼ �D0f �
e ðpÞ

e11
LðxÞ; ð76Þ

with

LðxÞ ¼
cos bb

2

� �
sec2 bb

2

� �
� v sec2 bx

2

� �� �
cos ba

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bb

2

� �
� tan2 bx

2

� �� �
tan2 bx

2

� �
� tan2 ba

2

� �� �q ; ð77Þ

v ¼ Pðc; kÞ
KðkÞ ; k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bb

2

� �
� tan2 ba

2

� �q
tan bb

2

� � ; c ¼
tan2 ba

2

� �
� tan2 bb

2

� �
sec2 bb

2

� � ; ð78Þ
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where K and P denote the complete elliptical integrals of the first, and the third kinds, respectively, i.e.

KðkÞ ¼
Z p=2

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2ðhÞ

q dh; Pðc; kÞ ¼
Z p=2

0

1

½1þ c sin2ðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2ðhÞ

q dh: ð79Þ

5. Physical quantities of concern

In analyzing the stability of a crack in a piezoelectric material, from the viewpoint of Griffith energy

balance, the energy release rate, or J -integral, is also taken as a significant fracture criterion in piezoelectric
materials (Suo et al., 1992; Dascalu and Maugin, 1994; Gao et al., 1997). Prior to the presentation of the

dynamic energy release rate, it is instructive to determine the distribution of the crack-tip field, which is

characterized the field intensity factors.

5.1. The permeable case

For a crack under the permeable assumption, from the results obtained in the preceding section the

asymptotic expression for s�yz in the close vicinity of the crack tips in the Laplace transform domain can be
expressed in terms of Xð	1; pÞ as follows:

s�yzðx; 0; pÞ ¼

s0f �
mðpÞXð1; pÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðbaÞ � cosðbbÞ
cosðbxÞ � cosðbaÞ

s
þOð1Þ; x ’ a� 0;

� s0f �
mðpÞXð�1; pÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðbaÞ � cosðbbÞ
cosðbbÞ � cosðbxÞ

s
þOð1Þ; x ’ bþ 0;

8>>>><
>>>>:

ð80Þ

from which, the dynamic stress intensity factor in the Laplace transform domain can be found to be

Ks�
IIIðpÞ ¼

s0f �
mðpÞXð1; pÞYa; for x ¼ a;

�s0f �
mðpÞXð�1; pÞYb; for x ¼ b;

�
ð81Þ

where

Ya ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½cosðbaÞ � cosðbbÞ


2 sinðbaÞ

s
; Yb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½cosðbaÞ � cosðbbÞ


2 sinðbbÞ

s
: ð82Þ

Hence, by inverting the Laplace transform, the dynamic stress intensity factor in the physical space is

obtained as

Ks
IIIðtÞ ¼ s0YFmðtÞ; ð83Þ

where Y is either Ya or Yb, and FmðtÞ is either F m
a ðtÞ or F m

b ðtÞ for the crack tips x ¼ a or x ¼ b, respectively.
Here F m

a ðtÞ and F m
b ðtÞ are defined by

F m
a ðtÞ ¼

Z t

0

fmðt � uÞ1ð1; uÞdu; F m
b ðtÞ ¼ �

Z t

0

fmðt � uÞ1ð�1; uÞdu; ð84Þ

in which 1ð	1; tÞ is the inversion of the Laplace transform Xð	1; pÞ, i.e.

1ð	1; tÞ ¼ 1

2pi

Z
Br

Xð	1; pÞept dp; ð85Þ

where Br denotes the Bromwich path of integration.
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In this case, the electric field is uniform, whereas the electric displacement is singular near the crack tips,

which arises from the coupling feature between electric and elastic fields. Moreover, the dependence of the

intensity factors of the stress and the electric displacement is found to be

KD
IIIðtÞ ¼

e15
c44

Ks
IIIðtÞ: ð86Þ

A knowledge of the field intensity factors can be used to obtain the dynamic energy release rate in the
physical space. As a result, based on the above results the dynamic energy release rate for a permeable crack

for each crack tip is given by

GIIIðtÞ ¼
1

2c44
½Ks
IIIðtÞ


2 ¼ s20
2c44

Y 2F 2mðtÞ; ð87Þ

where Y and FmðtÞ are defined as before.

5.2. The impermeable case

In this case, with gðs; pÞ and qðs; pÞ in hand, asymptotic expressions for s�yz, D
�
y , and E�

y in the close vicinity

of the crack tips are derived from (27), (29), and (31), which are omitted here. Furthermore, their intensity

factors at each crack tip in the physical space can be evaluated as

Ks
IIIðtÞ ¼ s0FmðtÞ

�
þ e15

e11
D0FeðtÞ

�
Y � e15

e11
D0LfeðtÞ; ð88Þ

KD
IIIðtÞ ¼ D0LfeðtÞ; ð89Þ

KE
IIIðtÞ ¼ � e15

e11

e11s0FmðtÞ þ e15D0FeðtÞ
c44e11 þ e215

Y þ 1

e11
D0LfeðtÞ; ð90Þ

where L takes either La or Lb corresponding to the crack tip x ¼ a or x ¼ b, respectively,

La ¼ ½ð1þ cosðbaÞÞ � vð1þ cosðbbÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2h
sinðbaÞ½cosðbaÞ � cosðbbÞ


s
; ð91Þ

Lb ¼ ðv � 1Þ½1þ cosðbbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2h
sinðbbÞ½cosðbaÞ � cosðbbÞ


s
; ð92Þ

FmðtÞ and FeðtÞ are defined similarly as previously.
Unlike the permeable case, the behavior of electric field and electric displacement for an impermeable

crack are dominated by r�1=2, r being the distance away from the crack tip, similar to the stress field near the
crack tips. Moreover, the dynamic electric-displacement intensity factor is proportional to the prescribed

electric-displacement impact function feðtÞ. The plots of KD
IIIðtÞ=D0feðtÞ

ffiffiffiffiffi
pl

p
or L=

ffiffiffiffiffi
pl

p
; 2l ¼ b� a being the

crack length, against l=h for a central crack and against b=h with a=h ¼ 0:2 for an eccentric crack are
depicted in Fig. 2, respectively. As expected, La is greater than Lb when b=h < 0:8 or h� b > a, and Lb is

greater than La when b=h > 0:8 or h� b < a. Furthermore, they are identical for a central crack in a
piezoelectric strip. It is noted that electric-displacement intensity factor for a central crack and two coplanar

cracks of equal length is obtained by a numerical approach in Chen and Meguid (2000) and Meguid and
Chen (2001). However, in the present study the analytic solution is determined in a closed form. Further,

the dynamic electric-field intensity factor has also a square-root singularity near each crack tip and a
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pronounced transient feature, depending on both the mechanical and electric impacts, which is not true for

a permeable crack.

Under such circumstances, the dynamic energy release rate at each crack tip for an impermeable crack is

obtained as

GIIIðtÞ ¼
1� k2e
2c44

s0FmðtÞ
�"

þ e15
e11

D0FeðtÞ
�2

Y 2 � 1

k2e

e15
e11

D0

� �2
L2f 2e ðtÞ

#
: ð93Þ

6. Numerical results

In the following, the effects of the material properties and the crack geometry including the position and
the length on the normalized stress intensity factor, ksðtÞ ¼ Ks

IIIðtÞ=Ks
0 ;K

s
0 ¼ s0

ffiffiffiffiffi
pl

p
being the corresponding

static value for an infinite piezoelectric sheet containing an isolated crack of length 2l ¼ b� a, are ex-
amined.

To obtain dynamic stress intensity factors, instead of an analytic approach (85), a numerical inversion of

the Laplace transform formulated by Stehfest (1970),

1ð	1; tÞ ’ lnð2Þ
t

X2N
n¼1

VnX

�
	 1; n lnð2Þ

t

�
; ð94Þ

with

Vn ¼ ð�1ÞnþN
Xminðn;NÞ

m¼½ðnþ1Þ=2


mNð2mÞ!
ðN � mÞ!m!ðm� 1Þ!ðn� mÞ!ð2m� nÞ! ; ð95Þ

where [ðnþ 1Þ=2] is the integer part of the real number ðnþ 1Þ=2, is utilized in this paper. This method has
reasonable accuracy for a fairly wide range of Laplace transforms (Davies and Martin, 1979), and apart

from its efficiency, it is also easy and simple. Like other numerical schemes, since inversion of the Laplace
transform is an unbounded operator, the stability of the inverted Laplace transform is sensitive to the
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Fig. 2. The plots of L in electric displacement intensity factor (a) for a central crack against l=h, and (b) for an eccentric crack against
b=h with a=h ¼ 0:2.
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choice of N in this approach. As suggested in Stehfest (1970), N is suggested to be taken as lower integers.
In the present study, based on the fact the dynamic results approach the static results as time is increased

sufficiently large, the optimum N is selected as 2.

For an eccentric crack in a piezoelectric strip, it is easily found that under the permeable assumption,
ksðtÞ and GnðtÞ depend upon the electromechanical coupling coefficient ke, not upon electric impact acting
on the crack surfaces. This is not true for an impermeable crack. For the latter, ksðtÞ and GnðtÞ depend upon
electric impact acting on the crack surfaces, which is in stark contrast to the former.

When time-dependent function f ðtÞ is taken as HðtÞ, denoting the Heaviside unit step function, which is
of much interest in practical applications, variations of ksðtÞ with the normalized time cst=l for ZnO, PZT
65/35, and PZT-4 are illustrated in Fig. 3 for a permeable crack. The electromechanical coupling coefficients

of three piezoelectric materials mentioned above are ke ¼ 0:2586, 0.4921, 0.7026, respectively (Li and
Mataga, 1996a,b). For comparison, the corresponding results for a purely elastic strip, i.e. ke ¼ 0, with a
crack are also depicted in Fig. 3. It is observed that the effects of the electromechanical coupling coefficient

are pronounced. Similar to that for a purely elastic strip, ksðtÞ rises quite rapidly in a small time, reaching a
peak, and then drops slowly to its static value for a piezoelectric strip with small electromechanical coupling

coefficient. The peak will disappear with an increase of electromechanical coupling coefficient. It is seen

from Fig. 3 that values of stress intensity factor near the left crack tip are identical to those near the right

crack tip for a central crack (Fig. 3(a)), and are greater than those near the right crack tip when h� b > a
(Fig. 3(b)).

In contrast, for an impermeable crack, ke has no any influence on ksðtÞ, and the electric impact acting on
the crack surfaces affect drastically ksðtÞ. To examine the effects of electric impacts on stress singularity near
the crack tips for an impermeable crack, in the absence of mechanical impacts, the transient response of

stress field due to purely electric impacts is first considered. Curves of the variations of the dynamic stress

intensity factor under various electric impacts such as feðtÞ ¼ HðtÞ, e�cst=l, and sinðcst=lÞ are plotted for a
central crack (Fig. 4(a)) and for an eccentric crack (Fig. 4(b)). For the first two time-functions, response

curve starts from a negative value and reaches a peak of response curve, while for the last time-function,

response curve starts from the origin and arrives at two peaks. It is easily found that the transient feature

due to sudden impact is evident at the early stage of the electric impacts, and the effects of electric impacts
on stress field are slight and negligible as the normalized time lt=cs is increased to 6. It indicates that
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0                    2                    4                    6 0                    2                    4                    6

(b)(a)

Fig. 3. Variations of the normalized stress intensity factor ksðtÞ against cst=l for (a) a=h ¼ 0:2, b=h ¼ 0:8; (b) a=h ¼ 0:1, b=h ¼ 0:5,
under the permeable assumption.
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dynamic stress field approach that for the corresponding static analysis. For the latter, electric displacement

loads acting on the crack surfaces do not produce any stress field (Pak, 1990; Zhang and Tong, 1996).

To examine the dynamic effects of electric impacts on stress field in the presence of mechanical impacts,

we consider a particular case. That is, assume sudden mechanical and electric impacts to be s0HðtÞ and
D0HðtÞ, respectively. Fig. 5 shows the variations of the normalized stress intensity factor ksðtÞ for a central
crack and an eccentric crack. It is observed that the dynamic overshoot becomes prominent with increasing

k (k ¼ e15D0=e11s0). A similar phenomenon can be found in Chen and Meguid (2000), Wang and Yu (2000)
and Meguid and Chen (2001).

The effects of crack length on stress intensity factors are also presented graphically in Figs. 6 and 7 for a

permeable and an impermeable crack, respectively. In these figures, curves of dynamic stress intensity

factors near the left crack tip are plotted for different crack lengths b=h ¼ 0:3, 0.6, and 0.9 and a=h ¼ 0:1.
From Fig. 6, the curve for a permeable crack does not to predict a peak of ksðtÞ when b=h > 0:6, and the
corresponding steady-state value for ksðtÞ is raised with an increase of the crack length. For an impermeable
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Fig. 4. Variations of stress intensity factors Ks
IIIðtÞ due to purely various electric impacts against cst=l for (a) a=h ¼ 0:2, b=h ¼ 0:8;

(b) a=h ¼ 0:1, b=h ¼ 0:5, under the impermeable assumption.
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Fig. 5. Variations of the normalized stress intensity factor ksðtÞ against cst=l due to mechanical and electric impacts for (a) a=h ¼ 0:2,
b=h ¼ 0:8; (b) a=h ¼ 0:1, b=h ¼ 0:5, under the impermeable assumption.
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crack, transient responses of purely electric impacts D0feðtÞ for feðtÞ ¼ HðtÞ and feðtÞ ¼ sinðcst=lÞ are shown
in Fig. 7. It is seen from Fig. 7 that negative value of stress intensity factor at the beginning stage increases

and the dynamic overshoot becomes unclear with increasing the crack length when feðtÞ ¼ HðtÞ. However,
if feðtÞ ¼ sinðcst=lÞ, two peaks of curve of dynamic stress intensity factor become greater as b=h rises.
Therefore, it implies that a long crack is easier to propagate than a short crack under purely electric im-

pacts. However, this is not true for a static problem. In other words, a crack has not a tendency to

propagation under purely electric displacement loads since no stress field can be induced.

7. Conclusions

The dynamic problem involving a piezoelectric strip with an eccentric crack normal to the strip
boundaries is analyzed under antiplane electromechanical impacts. Using the technique of variable sepa-
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Fig. 6. Variations of the normalized stress intensity factor ksðtÞ near the left crack tip against cst=l with different crack lengths and
a=h ¼ 0:1 for (a) ZnO with ke ¼ 0:2586 and (b) PZT-4 with ke ¼ 0:7026 under the permeable assumption.
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Fig. 7. Variations of the stress intensity factor Ks
IIIðtÞ near the left crack tip due to different electric impacts against cst=l with different

crack lengths and a=h ¼ 0:1. (a) feðtÞ ¼ HðtÞ and (b) feðtÞ ¼ sinðcst=lÞ under the impermeable assumption.
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ration, triple series equations resulting from the mixed boundary-value problem are further converted into a

singular integral equation. Dynamic stress intensity factors and energy release rate in the Laplace transform

domain are obtained. By solving numerically the resulting singular integral equation and performing nu-

merically the inverted Laplace transform, the normalized dynamic stress intensity factor is presented
graphically to show the effects of the crack position and the material properties for a permeable and an

impermeable crack.
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